Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
International Journal of Advanced Computer Science and Applications ; 13(12), 2022.
Article in English | ProQuest Central | ID: covidwho-2226288

ABSTRACT

The number of social media users has increased. These users share and reshare their ideas in posts and this information can be mined and used by decision-makers in different domains, who analyse and study user opinions on social media networks to improve the quality of products or study specific phenomena. During the COVID-19 pandemic, social media was used to make decisions to limit the spread of the disease using sentiment analysis. Substantial research on this topic has been done;however, there are limited Arabic textual resources on social media. This has resulted in fewer quality sentiment analyses on Arabic texts. This study proposes a model for Arabic sentiment analysis using a Twitter dataset and deep learning models with Arabic word embedding. It uses the supervised deep learning algorithms on the proposed dataset. The dataset contains 51,000 tweets, of which 8,820 are classified as positive, 37,360 neutral, and 8,820 as negative. After cleaning it will contain 31,413. The experiment has been carried out by applying the deep learning models, Convolutional Neural Network and Long Short-Term Memory while comparing the results of different machine learning techniques such as Naive Bayes and Support Vector Machine. The accuracy of the AraBERT model is 0.92% when applying the test on 3,505 tweets.

2.
IEEE Access ; 9: 102327-102344, 2021.
Article in English | MEDLINE | ID: covidwho-1334343

ABSTRACT

Coughing is a common symptom of several respiratory diseases. The sound and type of cough are useful features to consider when diagnosing a disease. Respiratory infections pose a significant risk to human lives worldwide as well as a significant economic downturn, particularly in countries with limited therapeutic resources. In this study we reviewed the latest proposed technologies that were used to control the impact of respiratory diseases. Artificial Intelligence (AI) is a promising technology that aids in data analysis and prediction of results, thereby ensuring people's well-being. We conveyed that the cough symptom can be reliably used by AI algorithms to detect and diagnose different types of known diseases including pneumonia, pulmonary edema, asthma, tuberculosis (TB), COVID19, pertussis, and other respiratory diseases. We also identified different techniques that produced the best results for diagnosing respiratory disease using cough samples. This study presents the most recent challenges, solutions, and opportunities in respiratory disease detection and diagnosis, allowing practitioners and researchers to develop better techniques.

3.
Sensors (Basel) ; 21(7)2021 Mar 24.
Article in English | MEDLINE | ID: covidwho-1154478

ABSTRACT

The COVID-19 epidemic has caused a large number of human losses and havoc in the economic, social, societal, and health systems around the world. Controlling such epidemic requires understanding its characteristics and behavior, which can be identified by collecting and analyzing the related big data. Big data analytics tools play a vital role in building knowledge required in making decisions and precautionary measures. However, due to the vast amount of data available on COVID-19 from various sources, there is a need to review the roles of big data analysis in controlling the spread of COVID-19, presenting the main challenges and directions of COVID-19 data analysis, as well as providing a framework on the related existing applications and studies to facilitate future research on COVID-19 analysis. Therefore, in this paper, we conduct a literature review to highlight the contributions of several studies in the domain of COVID-19-based big data analysis. The study presents as a taxonomy several applications used to manage and control the pandemic. Moreover, this study discusses several challenges encountered when analyzing COVID-19 data. The findings of this paper suggest valuable future directions to be considered for further research and applications.


Subject(s)
Big Data , COVID-19 , Data Science , Pandemics , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Pandemics/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL